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Abstract--The problem of expressing all the quantities, which are involved in the averaged field equations 
governing heat and mass transport in a disperse medium, in terms of the unknown variables of these 
equations and of physical parameters is investigated. Its constructive solution is obtained by means of 
formulating an accessory problem determining perturbations induced by a single particle in the mean 
temperature and concentration fields of an admixture. This is done on the basis of essentially the same 
reasoning as that applied when deriving the averaged equations themselves. By way of example, solutions 
of the latter problem under steady transfer conditions are considered thus permitting the effective thermal 

conductivity and the admixture diffusivity to be calculated as functions of physical parameters. 

I. INTRODUCTION 

IT IS well known that there have been an enormous 
number of attempts to find thermal and electric 
conductivities, diffusivity, electric and magnetic 
permeabilities and other effective transport properties 
of a disperse mixture consisting of discrete particles 
immersed in an ambient continuous medium. Such 
attempts date back to the classical Maxwell model 
and are being undertaken up until now ; a review of the 
early work on the subject can bc found, for example, in 
refs. [l, 21. However refined and ingenious some of the 
physical models underlying those endeavours may be 
or appear to be, they usually employ a wide variety 
of partial concepts which should be proved inde- 
pendently. These will not be discussed below. 

An alternative approach may consist in looking 
upon the determination of the effective transfer prop- 
erties of a disperse system under stationary conditions 
as a part of a much more general problem of closing 
the averaged conservation equations describing 
unsteady heat or mass transfer in phases of the system, 
the exchange between the phases being taken into 
account along with the transient flux of heat or mass 
of an admixture. It is just the latter problem which 
makes up the main topic of what follows. While solv- 
ing it, use is made of the same methods of averaging 
over configurational ensembles of the dispersed 
particles as those employed in the first part of the 
paper [3]. To make the matter simpler, the discussion 
is restricted to motionless macroscopically uniform 
and isotropic disperse mixtures containing equal 
spherical particles with no internal heat release or 
consumption. Then the averaging over the uncon- 
ditional ensemble results in the following field 
equations associated with transfer in the phases of 
a mixture (the nomenclature of ref. ]3] is retained) : 

c,dT,jat = -vq+o, c,paz,pt = --(T (1) 

where 

q(t,r) = -a,vz-(al -a,) s n(r’)V,z, dr’, 
(r-r’l<u 

o(t,r) = 
s 

n(r’)V,q, dr’, z = ttO + ps , , 
,r--r,,90 

a, = a(t, rlr’), q1 = q(t, rir’). (4 

Here q and a denote the mean transient heat flux 
and the mean heat exchange between the phases per 
unit volume of the mixture, respectively, and 7 is the 
mean temperature of the mixture as a whole. The 
variables carrying the subscript r’ are obtained by 
averaging over the configurational ensemble con- 
ditioned by the presence at the point r’ of the centre 
of a sphere. Thus, the closing of the averaged heat 
transfer equation (1) is reduced, in accordance with 
equation (2), to the determination of the mean tem- 
perature and heat flux inside a chosen test particle. 
There exist several reliable approaches to the cal- 
culation of these quantities. Either by means of 
considering interparticle thermal interactions with 
subsequent averaging over possible positions of all 
the spheres except the test one, or on the basis of more 
or less plausible ~s~ptions about the influence of all 
the other particles upon the temperature field within 
each of them. Before going into details of the general 
method of closure adopted here, it is reasonable to 
review briefly the key ideas exploited previously when 
attacking the problem. 

2. HIERARCHY OF HEAT TRANSFER 

EQUATIONS AND CLUSTER EXPANSIONS 

Let us consider the temperature field inside the test 
sphere with its centre at the point r’ surrounded by 
other spheres placed arbitrarily in the ambient matrix. 
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NOMENCLATURE 

a radius of spheres A heat conductivity 
B interphase heat exchange divided by p I.L> v self-consistency coefficients 
b shell radius P ~ncentration of particles by volume 
< heat capacity per unit volume fJ interphase heat exchange 
D, d dipole moments r temperature 
F correction to mean heat flux probability distribution function 
I mean distance between centres of !J relative volume concentration of 

neighbouring particles dispersed phase near test sphere 
N total number of particles w frequency. 
n number concentration of particles 

9 heat flux Subscripts 
T fine-grained temperature field 0 ambient matrix 
U(j) heat source associated with thejth 1 dispersed phase 

particle 1’ quantities conditioned by presence of test 
X distance from test sphere centre sphere centre at r’. 
2 X/U. 

Superscripts 
Greek symbols * perturbation to mean field 

a effective heat conductivity related to that * tem~rature field inside test 
of matrix, A/& sphere 

K ~,I& 
._ 

Fourier transformations. 

If the exact configuration of the system of these other 
spheres is known, then one has to study a boundary 
problem for conventional one-phase equations of heat 
conduction with appropriate boundary conditions at 
the surfaces of the spheres. The surfaces being pre- 
sumed to be thermally inactive, these conditions 
require continuity of the temperature and of the 
normal component of heat flux. 

The temperature distribution inside the test sphere, 
corresponding to a given arrangement of other 
spheres, stems from the solution of the boundary 
problem complying with this arrangement. To obtain 
the mean temperature field in a single sphere of a 
randomly packed disperse mixture one has to average 
such a distribution over the conditional ensemble of 
surrounding spheres. This is to be done with the help 
of the probability density function #(C,_ , [r’) intro- 
duced in ref. [3]. Unfortunately. the precise solution 
of the boundary problem involving many particles is 
at present impossibte so one can only hone to get an 
approximate solution when the mixture is sufficiently 
dilute (the ratio a/l is small compared with unity, a 
and 1 being the sphere radius and the mean distance 
between the centres of neighbouring spheres). Thus, 
results obtained by direct solution of the multiparticle 
boundary problem mentioned can be only accurate, 
at most, for mixtures of small volume concentration 
of the dispersed phase. 

In the alternative approach, the solution of the 
boundary problem does not precede averaging the 
temperature field inside the test sphere, but con- 
trariwise, the averaging of local conduction equations 
is first. This gives rise to a new problem of deriving 

effective averaged equations which would govern heat 
transfer in the vicinity of the test sphere. The 
derivation can be done in a similar way to the field 
equations (1) if one uses the conditional distribution 
function (p(C,_ ,]r’) rather than the unconditional 
one, d(C,). The result is 

where 

c,4”(a/2t)7”.l~ = - v,q,, +a,., 

p,,c.,(c3/iit)s,,,. = -c,, 13) 

-(a, -&) s n(r”lr’)V,r,,,,,. dr” 
,r-r,C”.~r’-r”l>z‘r 

li,. = i n(r”lr’)V,qr,.,- dr”. (4) 

The integrands contain ensemble averages con- 
ditioned by the presence of two sphere centres at pre- 
scribed positions compatible with the requirement of 
non-overlapping of the spheres. The integration itself 
allows averaging of these quantities over the pair dis- 
tribution function 4(r”, r) = N- ‘n(r”lr’). Similarly, 
integration in equation (2) means, in fact, averaging 
over the distribution function &(r’) = Nm ‘nfr’) for 
one sphere. Definition of all the dist~bution functions 
is considered in detail in ref. 131. 

By repeating this procedure it is possible to arrive 
at the whole hierarchy of equations for conditional 
averages corresponding to the fixation of the positions 
of various numbers of the spheres. In a general case 
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equations the unknown variables of which are con- 
ditional averages with iM fixed spheres include integral 
terms the integrands of which include averages of the 
next level when icp+ 1 spheres occupy given positions. 
The equations in sets (1) and (2), and in (3) and (4) 
symbolize the first and the second levels, respectively. 

Usually, when an infinite series of equations 
appears, one needs to enforce either closing or trunca- 
tion of the series at a certain level and, after that, to 
solve the equations in succession starting with those of 
the highest level. Classical examples of such a situation 
can be found in the statistical physics of liquids and 
dense gases as well as in the field of the statistical 
theory of turbulence. 

On the first level the problem is calculating the 
temperature inside and outside a single sphere, the 
presence of all the other spheres being totally left out. 
This fits very dilute mixtures the particles of which do 
not interact so that the test sphere can be regarded as 
immersed in a pure matrix. The desired temperature 
fields can then be found from a standard boundary 
problem with proper conditions of continuity at the 
test sphere surface ; at infinity the temperature must 
coincide as~ptoticalIy with its unconditional rep- 
resentation near the point occupied by the centre of 
the test sphere. The solution enables one to determine 
the integrands on the right-hand sides of the relations 
in set (2) and, thus, to close the averaged equations 
of heat conservation (1). As a supplementary result, 
one gets an expression for the effective bulk thermal 
conductivity of the mixture. The well-known 
Maxwellian formula embodies just this reasoning. 

On the second level the truncation is carried out 
with respect to equations for the mean phase tem- 
peratures under the condition that two spheres are 
fixed. This amounts to allowance for binary inter- 
actions of pairs of spheres, ternary, quadruple and 
other interactions being neglected. The problem is 
now to find the temperature in a system composed of 
the matrix with two immersed spheres. The boundary 
condition at infinity remains unchanged and the con- 
tinuity conditions are imposed now at two spherical 
surfaces. The resulting expressions for 7r.,r. and qr,.IP, 
are to be used in equations (4) and this correctly 
defines the boundary problem for the test particle, 
heat conduction in its vicinity being governed by the 
first equation in set (3). This equation can be formally 
thought of as being associated with a certain fictitious 
medium, the properties of which reflect those of both 
matrix and particles simultaneously and, moreover, 
depend upon the distance from the test sphere centre. 
Solving the boundary problem for the test sphere sur- 
rounded by the fictitious ambient medium leads, as 
before, to certain expressions for z,, and qr, to be used 
in equation (2) and then in equation (1). Again this 
ensures the closure of the averaged heat transfer 
equations. 

As far as the present author is aware, so far nobody 
has considered the problem on the third or higher 
levels. Nevertheless, a rather systematic formal 

approach to the closure problem on any level of the 
hierarchy is by no means impossible, as it has been 
convincingly demonstrated by Jeffrey 141. His pro- 
cedure consists of independent introduction of main 
cont~butions to a given physical quantity (e.g. the 
bulk heat flux) stemming from thermal interaction 
within groups containing one, two and more particles. 
It resembles in essential features the group expansion 
method of the statistical mechanics. Some other 
methods involving the ordering of multiparticle inter- 
actions have been proposed, mostly while dealing with 
hydrodynamic problems related to the rheology of 
suspensions of free particles and to ~ltration flows in 
beds of motionless particles. The present author feels 
that the original paper by Howells [5] should be men- 
tioned in this connection. It seems that all the methods 
of accounting for joint interactions within limited 
groups of particles which have been put forward until 
recently are to be looked upon as versions of the 
cluster expansions encountered in statistical physics. 
This has been emphasized and discussed earlier [6]. 

An actual realization of any cluster procedure for 
disperse media has never been explained beyond the 
second hierarchical level. Even so rather serious 
difficulties arise when evaluating the integrals in equa- 
tion (4). They are due mostly to long-range effects of 
either thermal or hydrodynamic interaction of pairs 
of particles resulting in the integrals being not 
absolutely convergent. Schemes devised to overcome 
these difficulties sometimes lead to contradictory final 
results. This means that some correct renormalization 
procedure has to be brought into practice in order to 
bypass the problem of non-absolute convergency. An 
elegant procedure of the kind has been suggested in 
connection with the problem of the sedimentation of 
suspensions [7] and extended further to a number 
of other probiems, including that of determining the 
effective thermal conductivity [8]. An important 
exception is presented only by the problem of the 
hydraulic resistance and permeability of granular beds 
where the long-range effects vanish [9]. 

It should be stressed here that different attempts to 
employ the cluster expansion method would result at 
best in determining polynomial expressions for effec- 
tive mixture properties in degrees of the particle con- 
centration by volume. Really, interactions on the 
Mth level pertaining to be the cooperative influence 
of M particles give rise to terms of the order of pLW 
in such expressions. It is clear, therefore, that con- 
ceivable results of such attempts, however rigorous 
and reliable, are bound to be confined to dilute mix- 
tures. That is, a pragmatic importance of such an 
approach is limited and one should look in another 
direction to receive conclusions valid in a more broad 
range of the particle volume concentration. 

3. SELF-CONSISTENT APPROXIMATION AND 

MULTiPOlE EXPANSIONS 

Another general method devised to treat mixtures 
of moderate or high concentration and, in particular, 
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to calculate TV. and q,, appearing in the integrands in 
equation (2) is founded on ideas common to the 
theory of self-consistent fields [lo]. The basic underlying 
assumption is that a typical particle can be regarded as 

being embedded in a fictitious homogeneous medium 
whose properties are representatives of those of the 

whole mixture. Such a scheme is essentially empirical. 

In addition to the simplest possible model when the 

fictitious medium is thought of as being identical to 
the mixture in the sense that it is fully characterized 

by the bulk properties of the latter, there exist versions 

of the self-consistent scheme when the test particle is 
separated from the medium by a concentric layer filled 

with the pure matrix material, the layer thickness 
being unknown [lo]. 

According to this method, the conditional averages 
appearing in the integrands in equation (2) are to 

be found straightforwardly by solving a boundary 

problem for the test particle immersed into the fic- 
titious medium with a given temperature distribution 

at infinity. The problem for the spherical particle at a 
point r’ is formulated under steady conditions in the 

following manner : 

AZ”’ = 0, x > b; A7(‘) = 0, a < x < b; 

At* = 0, x < u; limz”’ = 7(r’) +E(r’)x, 

x + co, E(r’) = Vzl,_, ; d*’ = z*, 

I,nV7(‘) = E,,nVz*, x = u; 7(I) = 7(2) 

inV7”’ = i,,nV~‘~‘, x = b; 7* # m, 

x=0; x=r-r’. (5) 

Here the mean temperature field of the mixture, 
7(r), near the point r’ is regarded as an outer asymp- 

totic expansion of 7”)(r). The external radius b of 
the concentric spherical layer seems to be principally 
indeterminable within the frames of the self-consistent 

theory; usually it is taken equal to ap- I”. Note some 
affinity of these schemes with the known cell model 
which utilizes the concept of an individual shell sur- 

rounding each particle as well. 

A certain substantiation of the self-consistent 
approach may be advocated with the aid of a multi- 
pole expansion procedure [ 111. By virtue of linearity 
of the heat conduction equation the fine-grained tem- 

perature field, T,(t, rIC,), in the matrix region can be 
presented as a sum of a matrix temperature T’(t, r) 
as it would be if the particles were absent and of 
quantities P)(t, r ,b”), j = 1,. , N where each TO’ 
is ,a temperature perturbation induced by the jth 
particle. Then, if one considers the situation near the 

test sphere, 

T,,(t,rlCN_,) = T”(t,r)+ C T”‘(t,r,r(“). (6) 
,=I 

The fields T”(t, r) and TO)(t, r, r”)) satisfy within 

the matrix the equations 

c,aT”l& = -&AT”, 

c,$T”‘/& = -&AT”‘+ UC’), (7) 

where by definition 

W’(t,r”)) = i 0 
s 

nVT(‘)(t r r”‘)d(r-ru’ -a) da, 9 , 

(8) 

a being a vector connecting the sphere centre with a 

point on its surface and n denoting the unit normal 
vector. It is evident that U(‘) describes a heat source 
imitating the thermal influence of the jth sphere. By 

expanding the vector delta-function in the integrand 
one arrives at a multipole expansion 

tP(t, r”)) = I, nVTO)(t, r”+a, P) 

u!Ai .,A r(‘9 

= (;I:& 
s 

nVT”)(t, r(j) +a, rti))apk.. a,, da. (9) 

The tensor quantity represents multipole moments 
of the thermal source UO’(t, rci)) distributed over the 

jth spherical surface. If the particles do not produce 
or absorb heat by themselves, then the zeroth mono- 
pole term vanishes. But it is not so under unsteady 
conditions of the interphase heat exchange. The fol- 

lowing terms in equation (9) correspond to dipole, 
quadrupole, etc., moments of the jth thermal source, 
all the multipoles being located at the points occupied 
by the centres of the spheres. 

The simplest possible way to treat the problem 

under stationary conditions is to substitute all U6’ by 
the corresponding dipole terms neglecting all the other 

multipoles in sum (9). Then, by collecting together 

equations (6)-(9), one gets 

h 

&AT, - 1 D”‘VS(r-r”‘) = 0, 
,= I 

D”)(rJ)) = & nVT(“(ru’) + a, r’/‘a da. (10) 

By means of averaging equations (10) over possible 
configurations of all the spheres except the test one 
positioned at the point r’ one obtains further 

&AT,,,, - Vd, = 0, 

d,. = d(r/r’) = N (D),&r,r’)&r-r”)dr” 

= @hr., II, = n(rlr’), 

(D),, = i. 
s 

nV7,,(r”’ + a, r”))a da. (11) 
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Here the fact that the point dipoles are substituted 
for the real particles of finite volume is explicitly taken 
into account. 

Bearing in mind the concept of tensor dimen- 
sionality as well as the linearity of the heat conduction 
equations, it is easy to conclude that (D), in a macro- 
scopically isotropic system must be proportional to a 
unique vector quantity-the gradient of the mean field 
z O,r,, that is, (D),. = AVz,,,, so that it is possible to 
transform the equation in equations (11) to a more 
familiar form. Adding the heat conduction equation 
inside the test particle one arrives at a boundary 
problem 

V(& -An,,)Vzo$ = 0, X > a; 

Az*=O, .x<a; 

lim to.r. = rO(r’) +E,(r’)x, x -+ “o, 

E&r’) = Vrolx=o; 

t*,$ = z*, (2” - An,~)nVr~*$ = 1 #w, 

x=a’ , ~*#co, x=0; x=r-rl. (12) 

This problem resembles that represented by 
equations (5) except that ro,,. plays here a role of 
$1) = rr.. For macroscopically homogeneous mix- 
tures n,, = n(x). If n(x) = 0 when LI < x < 2a and 
n(x) = n = const. when x > 2a, which is quite 
natural to assume when neglecting fine details of 
multiparticle interactions, then one infers that 
E., - An,, = I, - An = Aa outside the sphere x = 2a 
and &-AR,~ = d, in the concentric layer a < x < 2a. 
Thus, the value of b appearing in equations (5) 
becomes definite. The interconnection between E, and 
E as well as between 1” and 1 remains unknown, 
however. Therefore, some supplementary hypothesis 
about averages associated with the mixture as a whole 
and only with its matrix is still needed. Two examples 
of such a hypothesis linking those averages, both 
hardly being successful, can be pointed out [l 1, 121. 
For instance, the authors of ref. [12] have drawn a 
conclusion that the well-known Maxwellian formula 
for the effective conductivity is valid not only for very 
dilute systems but also for disperse mixtures of any 
concentration. Although they have succeeded in 
mending this mistake later on, they have made other 
errors of principal nature stemming from an in- 
adequate understanding of the origin and the essence 
of the phenomenon of non-absolutely convergent 
integrals mentioned above [ 131. 

A reasonable way of dealing with this obstacle is to 
put E, = E (and hence 1’ = 1) and so turn from 
equations (12) to problem (5), the thickness of the 
concentric layer being now specified. Then, as before, 
the solution of the problem yields the field t*(x) = z,, 
and the heat flux qr, inside the test particle which are 
to be used in the definition of (D)r, in equations (11). 
From this and from the relation (D),. = AVzo,,, a 
transcendent algebraic equation for A follows again, 

and this gives an opportunity to derive 1 = 1’ as a 
function of physical parameters. Thus, one arrives 
in a quite natural manner at the condition of self- 
consistency. 

A general inference resulting from the analysis 
above is that both the self-consistent scheme and 
the multipole expansion method require a rigorous 
substantiation by means of some independent 
consideration or need to be confirmed by direct com- 
parison with either experiments or results obtained 
with the help of other methods. It is expedient to point 
out in this connection that the multipole expansion 
method in its latter fo~ulation is able to provide for 
results of high reliability. For example, components 
of the tensor of effective thermal conductivity in a 
mixture of aligned spheroidal particles calculated with 
this method in ref. [14] happen to differ negligibly 
from their values derived in a more rigorous fashion 

]151. 

4. THE TEST PARTICLE PROBLEM 

Let the centre of the test sphere of a macroscopically 
uniform and isotropic system to be placed, as before, 
at the point r’. It is evident that t = 1 -p and p 
are constant whereas the conditional concentrations 
of the continuous and the dispersed phases may 
be expressed as functions of x = /r-r’], that is 
L,, = 1 -pI, = t(x) and prs = p(x). The problem is to 
represent the integrals over the test sphere volume 
involved in equations (4) through p(x) in the same 
manner as those in equations (2) are being expressed 
in terms of p. 

The local situation near any physical point of the 
system is fully determined under accepted assump- 
tions by a set of the scalar unknown variables r. and 
r 1 and of their time derivatives of various orders. Since 
the original heat conduction equations in the materials 
of the phases are linear, dependences of the integrals 
in equations (2) on those derivatives must be linear as 
well. Taking into account that both integrals have to 
include terms of appropriate tensor dimensionality, 
one obtains 

a7, a7, 
~1, at, -Ii7,... 1s n(r’)V,z,, dr’ 

11--ii<” 

ah, av7, 
Vt,, lat, at,... (13) 

B and F being certain unknown linear functions of 
their arguments and n,, = n = const. 

Let us make allowance now for the fact that r , can 
be unequivocally expressed through to with the help 
of the second equation in set (1) so that its derivatives 
may be excluded from equations (13). This gives 
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C?‘VT 
B= - f p,$, F = i v, $, (14) 

j-0 , = (, 

,uj and v, being unknown constant coefficients. Under 
stationary conditions all the time derivatives equal 
zero so that only p0 and v0 remain. In a general case it 
is reasonable to use the Fourier transform (or another 
linear integral transform) which reduces equations 
(14) to 

8 = -p’zo, F = VV?,,, 

fi = 2 (iW)‘/Jj, (151 
j-0 

v = ,E” (io)‘v,, 

where the overbar marks Fourier t~ansfo~ations of 
corresponding functions and io stands for the oper- 
ator d/d?. Thus, the problem is to find only two 
coefficients /J and v in any case. Note that equations 
(13)-( 15) define also q and CJ in accordance with 
equations (2). 

In order to express q., and CJ’,, in a similar form. 
it is necessary to single out those parts of condi- 
tional fields of the type of tO,r. = z,(t, rlr’) and 
r,,<. = t,(t, rjr’) which are due to the presence of the 
surface of the test particle in its capacity of an external 
boundary. This is possible to do by incorporating 
into the analysis perturbation tields of the type of 
7* O.r = zb(t, rlr') and z& = t:(t, rlr') characterizing 
mean deviations of t&t, rjr’) and ‘zi (t, r/r’) from 
r,(f, r) and z,(t, r) caused by such a boundary: by 
following ref. [3] one obtains 

(OT),, = ~z,(t, r) +t(x)zi$(t, rlr’), 

((I -U)Th = p~,(r.r)+p(x)zr(l,rlr’), (16) 

where 0 is the characteristic function equating zero 
inside the particles and unity otherwise and T is the 
fine-grained field of temperature. In just the same 
manner one gets 

.I” n(r”jr’)V,q,.,r.. dr” = yB+p(x)B:, 
,r~r',s-o.,r'--r",,Zo 

r n(r”Ir’)V,7,‘.,- dr” = pF+p(x)F:, 
,,I+ r,c<,,,r’-r’,‘21< 

(17) 

where B$ and F: are linear function dependent on 
z&. and on its time derivatives in exactly the same 
way as B and F depend on z. in accordance with 
equations (14). That the mean volumetric con- 
centration p(x) of the dispersed phase in the close 
vicinity of the test sphere deviates from its asymptotic 
value p is, thus, explicitly accounted for. The formulae 
(18) help in expression ql, and 5,, involved in equations 
(3) as 

qr, = q+qf, 0,. = pB+p(x)B$, 

q = -&VT-(i, -i&F, 

q* = - (I., - %,)p(x)F*. (18) 

These formulae enable one to present the avcragcd 
field equations (1) in the form 

~,d7,/df = &A7 + (2, - d,)pVF + pf?, 

c,c:t,i’?r = -B (19) 

and to do the same with the equations in set (3) 
as well. Further, by subtracting equations (13) from 
equations (3) one derives 

7: = r(.Q& +p(_x)7y.r. : (20) 

these equations govern the perturbation fields zz,, 
and zt,,. 

The quantities B and F in equations (19) as well as 
B: and F* in equations (20) are expressible through 
z0 and Z& in compliance with equations (14) and 
(15). This is why set (19) can be reduced to a single 
field equation for z,, and set (20) is equivalent, in 
essence, to a closed equation for the perturbation z:,, 
The latter equation together with that of conventional 
heat conduction inside the test sphere gives an oppor- 
tunity to formulate the test particle problem in a con- 
sistent way. Boundary conditions imposed on the sur- 
face of the test sphere have to allow for contmuity of 
both temperature and heat flux whereas that at inanity 
must require the perturbation to tend to zero. The 
solution of the problem determines the integrands in 
equations (2) as functions of the unknown coefficients 
p and v. The subsequent integration enables one to 
obtain alternative representations for Band F depend- 
ing on p and v as on parameters. At last, the identi- 
fication of these representations with equations (14) 
or (IS) leads to transcendent algebraic equations 
whose solurion gives explicit expressions for both 
unknown coefficients and, thereby, defines q and c 
involved in the field equations (1). This brings the 
analysis to an end. Such a method seems to have been 
discussed for the first time in ref. [ 161. 

Before proceeding to the determination of p(x) 
possible semi-empirical hypotheses about this func- 
tion wiI1 be pointed out. First of all, if one neglects 
the non-overlapping property of the spheres, there is 
no reason to distinguish between p(x) and p. This 
corresponds to the model of homogeneous fictitious 
medium and may happen to be agreeable for mixtures 
of moderate concentrations. That it is actually the 
case is evidenced by comparison with experimental 
data. Another phenomenological assumption may 
consist in postulating that p(x) = p when x > b and 
p(s) = 0 otherwise, which returns the reader directly 
to problem (5). This model has been considered at 
h = 2a in ref. [17]. 

It is evident in a general case that the condi- 
tional number concentration n(t, rlr’) = N+(t, r, r’). 
cb(t. r, r’) being the binary correlation function for a 
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FIG. 1. Region of integration in equations (4) and (21) 

pair of the spheres [3]. For macroscopically isotropic 
and time-independent n(t, r]r’) = n(x), x = r-r’ and 

P(X) = s n(Y) dx’, 
jx--x’,<“,X’> 2” 

x = r-r’, x’ = f-r’. (21) 

The simplest model of n(x), amounting to neglect 
of joint interactions of more than two spheres, yields 

[I71 

n(x) = n, x>2a; n(x)=O, u<x<22a. (22) 

Then the integration in equation (21) can be easily 

performed to get 

P(X) = PW), a = x/a, 

I+!+) = (16z)-‘(27-56z+30z2-z4), 

1 < z < 3a, (23) 

and I,!I(z) = 1 at z > 3. Other and more elaborate 

models must take into account the consequences of 
interactions within groups of several spheres. Such 

modeis (e.g. those by Kirkwood et al. the hypernetted 
one) are well known in the statistical mechanics of 
dense gases and liquids and result in oscillating func- 
tions ll/(z) and p(x) [lfi]. The region of integration 
according to equations (21) is shown in Fig. 1 and 
characteristic functions $(z) are given in Fig. 2. 

FIG. 2. Relative volume concentration of dispersed phase 
near the test sphere surface; 1, equations (23) ; 2,3, model 
by Percus and Yevick at p = 0.2618, 0.4712; 4,5, model by 

Kirkwood at p = 0.2314, 0.4840. 

5. AN EXAMPLE: EFFECTIVE CONDUCTIVITY 
UNDER STEADY CONDITIONS 

Let us apply the above consideration to a familiar 
problem of calculating the effective thermal con- 
ductivity of a macroscopically uniform and isotropic 
disperse medium with equal spherical particles. In 
view if the identity of corresponding mathematical 
formulations, the result to be obtained must be valid 
also for the effective diffusivity, the effective electrical 
conductivity as well as for effective electric and 
magnetic permeabilities of the medium. 

Under stationary conditions the quantity rr turns 
to zero and the mean heat flux is to be presented, in 
compliance with equations (2), (13) and (14), in the 
following form : 

q = -ivz, i, = pn,, b = I+ (ic- l)vp, 

K = a,/&, (24) 

where tZ is the effective conductivity under question. 
Relations (18) lead to a complementary expression 

q:: = -i*(x)Vt,*, n*(x) = /3(x)&, 

/7(x) = 1+ (rc- l)vplj/(z) (25) 

which defines the first equation in set (20), $(z) being 
expressed in accordance with equations (23) or in 
agreement with a more elaborate scheme (Fig. 2). 
Now it is possible to state the boundary problem for 
~rturbations produced by the test sphere. Without 
going into details the finaf result will be presented : 

V~(x)Vz*]=O, x>a; A?=O, a&x>O; 

z*+z = z^, A*(a)nVz*+-JnVz = I,nVz^, x = a; 

7*+0, X-CO; QZCO, x=0, (26) 

i being the mean temperature inside the sphere. The 
subscript r’ is dropped for simplicity. If r = Ex, then 
Z* and P can be shown to be proportional to Ex as 
well and, further, 

r* =f(x)Ex, ? = VEX, (27) 

where the function f(x) is understood as a solution 
to the problem 

f= v-l, a(df/dx) = E(K-1), x = a; 

f-0, x-+m. (28) 

Thus, there are three conditions for an ordinary 
differential equation of the second order. Problem 
(28) determines, therefore, not only f(x) but also the 
parameter Y playing the role of eigenvalue. 

In a general case of a complicated function p(x) (or 
q?(z)) the desired solution of equation (28) is to be 
obtained numerically. However, if simplified versions 
of ll/(z) are utilized, the solution can be derived in an 
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analytical form. For moderately concentrated systems 
($(z) = 1) one readily gets 

v=&; /3= 1+3@&$, (29) 

the latter equation yielding 

/I = (1/4){2-3p-h-(l-3p)+[(2-3p 

-~(1-33p))~+8rc]‘~~}. (30) 

If $(z) is substituted by a step function (I,@) - 1, 

z > 2 and $(z) = 0, 1 < z d 2) one obtains [17] 

instead of equation (30) 

Ir= [7~(l-p)+17+7~1~‘{K(l+ll~) 

f[7K(l -p)+ 17$7p][JC(5+7p) 

+7(1 -p)])“2}. (31) 

These expressions define completely ,B and 1 within 
the scope of the approximation indicated. It should 
be stressed that equation (31) leads to a good agree- 
ment with experiments for composite materials and 

other disperse mixtures in the case IC 6 1. An example 
is presented in Fig. 3 where the theoretical curve for 

/I as a function of p at tc = 0 is drawn together with 
the experimental data on diffusion in granular beds 
collected in ref. [17]. It is worth noting that formula 

(31) gives an opportunity to find an analytical 

expression for the tortuosity factor usually introduced 
when describing diffusional processes in hetero- 

geneous media. 
The situation is different if IC B 1. In this case the 

model resulting in equation (31) seems to be 
insufficient because it underestimates the effective con- 

ductivity, and a more thorough analysis based on 
either equations (23) or models specific to the stat- 

FIG. 3. Effective relative heat conductivity as a function of 
concentration of particles by volume at K = 0; 1, equations 
(30); 2, equation (31) ; points, experiments on diffusion 

presented in ref. [ 151. 

P 

FIG. 4. Relative heat conductivity in accordance with equa- 
tions (31) and (23) (dashed and solid curves, respectively) at 

different ti (figures on the curves). 

istical mechanics is necessary. The correlation 
between values of p obtained from equation (3 1) and 
those computed with the help of equations (23) is 

illustrated by Fig. 4. Model (23) gives quite acceptable 
results which are, however, slightly different from ones 
corresponding to more exact forms of the binary cor- 
relation function. To demonstrate this, dependences 

of /I on p conforming with different models of ran- 
domly packed mixtures are given in Fig. 5. Note that 

the curves derived from the model by Kirkwood and 
by Percus and Yevick are practically indistinguishable 

[191. 
The compliance of the theory of this paper with the 

experiments on the effective electric conductivity of 
emulsions carried out in refs. [2&23] is confirmed in 

FIG. 5 Relative heat conductivity for different structural 
models of binary correlations at IC = 0.1, 100 ; 1, equations 
(30) ; 2, equation (31); 4. Percus--Yevick and Kirkwood 

models ; 3, model (23). 
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2 

P 

1 

0.8 

0.8 

P 

FIG. 6. Comparison of the theory experiments on electric 
conductivity of emulsions; l-5 correspond to the Percus- 
Yevick model at K = 0.0.172, 15.7, 100 and co, respectively; 
6-9, different experimental results at K = 0 [XL231 ; 10-13, 

results for K = 0.172, 15.7, 101 and co, respectively [23]. 

Fig. 6. The theoretical curves have been obtained by 
using the Percus-Yevick model [19]. A general con- 
clusion from the above is that the theory suggested 
gives reliable results concerning the stationary effec- 
tive conductivity. 

6. CONCLUDING REMARKS 

A significant and rather attractive feature of the 
theory developed to close the averaged equations of 
heat and mass transfer consists in that its field of 
applicability is restricted by neither steady transport 
processes nor monodisperse systems of motionless 
spheres. In the remainder of the paper we would like to 
point out briefly some recent results revealing feasible 
directions of future work on the subject. 

First of all, the theory can be used with equal 
success when studying effective transfer properties 
in mixtures containing particles of other forms, as 
that is evidenced by the analysis of dispersions of 
spheroids in ref. [15]. Such a dispersion ceases to 
be macroscopically isotropic in a general case and 
its effective conductivity coefficients form a tensor of 
the second order depending on the degree of ordered 
alignment of the spheroids. 

When applied to the calculation of effective transfer 
properties under non-stationary conditions, new rep- 
resentations for both the transient heat flux q and the 
mean heat exchange 0 between the phases per unit 
volume of a disperse mixture are attained. These 
quantities happen to involve terms containing time 
derivatives of the mean temperature and enable one 
to describe certain important relaxation processes 
occurring in the mixture in full accordance with exper- 
imental evidence. An example of treatment of this 

kind is provided for in ref. [24] where the self-con- 
sistency conditions have been formulated by means of 
using the Fourier transform in accordance with the 
formulae in set (15). 

The statement of the test particle problem can be 
generalized to situations when specific interfacial 
properties of dispersed particles are of importance 
(e.g. the surface conductivity especially peculiar to 
some emulsions and colloidal systems) and direct 
transfer through contacts of the particles plays a sig- 
nificant role (as may be the case for closely packed 
systems). Both these factors have been taken into 
account in ref. [25] and a satisfactory agreement with 
available experimental data has been gained. 

Of more interest, the same reasoning is quite applic- 
able to combined processes of heat and mass transfer 
accompanied by internal heat and mass release and 
by chemical reactions and phase transitions both in 
the bulk of either a matrix or particles and on the 
interface. All these factors are able to influence effec- 
tive mixture properties to a considerable extent. An 
example of a successful application of the theory to 
the description of diffusion and of diffusionally 
induced phase transitions in a solid disperse mixture 
in connection with problems of the thermochemical 
processing of heterogeneous metals is to be found 
in ref. [26]. 

A possible sphere of application of the theory is by 
no means exhausted by the examples indicated and 
much remains to be done along all the lines 
mentioned. It is expedient to stress in this respect that 
the theory under discussion gives a principal oppor- 
tunity to treat these and other problems with a sound 
hope to succeed whereas that could hardly be said 
about particular models of various nature devised 
previously with limited aims in view. 

The test particle problem needs to be reformulated 
somewhat in a case of infiltrated fixed granular beds 
when convective transfer to or from surfaces of the 
granules must be accounted for. The above results are 
approximately valid if the particle Peclet number is 
small compared with unity and, in the general case, 
one has to incorporate convective terms in equations 
(20) and to change the boundary condition of heat 
flux continuity at the test particle surface. 

Much more complicated problems arise if dispersed 
particles are not at rest so that their binary correlation 
function cannot be thought of as a given quantity. 
Moreover, it depends essentially on the type of flow 
around the test particle affected to a great extent by 
hydrodynamic and other interactions with neigh- 
bouring particles. This is why the binary correlation 
function has to be understood as one of the unknown 
variables to be determined while solving the rheo- 
logical problem for a disperse mixture under study 
alongside with all the other unknown variables. An 
informative discussion of the latter problem is 
presented in ref. [27]. 

In conclusion it should be indicated that the 
developed general method of closing the averaged field 
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equations is applicable also while dealing with transfer 13. 

of a vector quantity, such as momentum. Therefore, 
the same approach serves a useful purpose in the 
determination of rheological properties of flowing 14, 
mixtures, moduli of elasticity of composite materials 
and so forth. By way of example, refer to paper [28] 
where effective characteristics of thermo-elasticity of 15. 

composite materials have been successfully inves- 

tigated. 
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TRANSFERT DE CHALEUR ET DE MASSE DANS LES MILIEUX DISPERSES-II. 
EQUATIONS CONSTITUTIVES 

R&rm&On Ctudie le probltme de formulation de toutes les granceurs impliquees dans les equations de 
champ moyen qui gouvernent le transfert de chaleur et de masse dans un milieu disperse, en fonction des 
variables inconnues de ces equations et des parametres physiques. La solution est obtenue en formulant 
un probleme annexe qui determine les perturbations induites par une seule particule dans les champs 
moyens de temperature et de concentration. Au moyen d’exemples, les solutions, dans les conditions de 
transfert permanent, sont consider&es et elles permettent de calculer la conductivite thermique effective et 

la diffusivite en fonction des parametres physiques. 
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WARME- UND STOFFTRANSPORT IN DISPERSEN MEDIEN-II. 
DIE BESCHREIBENDEN GLEICHUNGEN 

Zusammenfassung-In den gemittelten Feldgleichungen fiir den Wirme- und Stofftransport in einem 
dispersen Medium kommen Grogen vor, die in Abhangigkeit von den unbekannten Variablen dieser 
Gleichungen und von physikalischen Parametern beschrieben werden m&en. Dieses Problem wird in 
der vorliegenden Arbeit untersucht. Die Losung beruht auf der Formulierung eines Hilfsproblems zur 
Bestimmung von Storungen, die durch ein einzelnes Partikel in den Feldern fur die gemittelte Temperatur 
und Konzentration ausgelost werden. Dies geschieht im wesentlichen auf derselben Grundlage wie bei der 
Ableitung der getnittelten Gleichungen selbst. Mit Hilfe eines Beispiels werden die Liisungen des Problems 
tinter stationiren Bedingungen betrachtet, was die Ermittlung der effektiven Warmeleitfahigkeit und der 

Diffusivitat in Abhangigkeit von den physikalischen Parametern erlaubt. 

TEIIJIO- W MACCOHEPEHOC B J&ICIIEPCHbIX CPEJIAX-II. OCHOBHbIE YPABHEHHJI 

AimoTaunn-RiccnenosaHa npo6neMa npencrasneHua ncex neJ-uiwni, no5wuu0wixcK n ycpeweHHbIx 

nonenbIx ypaeHewisx Tenno- II MacconepeHoca B wcnepcaoii cpene, n swAe @ywcu~ii Heu3BecTHbtx 

nepeMeHHbIx JTHX ypaBHeHufi u @~~HwCKUX napaMeTpoB.KOHCTpyKTuBHOe peuIeHHe npo6nehnbr nony- 
YeHO npEi nOMOIlui @OpMyJlEipOBKH BCnOMOTaTeJIbHOfi 3uAaW 0 BO3MyUleHHffX,BHOCuMMX KaKofi-nw6o 

on~ol vacraueli B cperwue norm TeMnepaTypbl u KoHueuTpautni npuhwcu. llocnemee nenaerca iia 
ocnone C~WSTB~HH~ Tex wte coo6pameaufi, YT~ w ucnonbsyehnde npw nbmoae ca~ux ycpemeHHbIx 

ypaBHeHHii. B KaWCTBe npuhlepa puCCMOTpeHb1 ~IlIeHuK yKa3aHHOii 3aAa'iu upH CTaIJHOHapHblX yCJIO- 

BHHX,'ITO IlO3BOJllIel BbI'i&iCJI~Tb3I#@eKTHBHbIeTenJlOnpOBOAHOCTb WK03@@uWeHT~W~~y3EiH np&iMeCu 


